Integrated Circuit Technology

In: Computers and Technology

Submitted By Brendon4787
Words 353
Pages 2
Processor | Transistor count | Date of introduction | Manufacturer | Intel 4004 | 2,300 | 1971 | Intel | Intel 8008 | 3,500 | 1972 | Intel | | | | | | | | | Intel 8080 | 4,500 | 1974 | Intel | | | | | Intel 8085 | 6,500 | 1976 | Intel | | | | | | | | | Intel 8086 | 29,000 | 1978 | Intel | Intel 8088 | 29,000 | 1979 | Intel | Intel 80186 | 55,000 | 1982 | Intel | | | | | Intel 80286 | 134,000 | 1982 | Intel | | | | | Intel 80386 | 275,000 | 1985 | Intel | | | | | | | | | Intel 80486 | 1,180,235 | 1989 | Intel | | | | | | | | | | | | | Pentium | 3,100,000 | 1993 | Intel | | | | | Pentium Pro | 5,500,000 | 1995 | Intel | | | | | Pentium II | 7,500,000 | 1997 | Intel | | | | | Pentium III | 9,500,000 | 1999 | Intel | | | | | | | | | Pentium 4 | 42,000,000 | 2000 | Intel | Atom | 47,000,000 | 2008 | Intel | | | | | | | | | Itanium 2 McKinley | 220,000,000 | 2002 | Intel | | | | | Core 2 Duo | 291,000,000 | 2006 | Intel | Itanium 2 Madison 6M | 410,000,000 | 2003 | Intel | | | | | | | | | | | | | Itanium 2 with 9MB cache | 592,000,000 | 2004 | Intel | Core i7 (Quad) | 731,000,000 | 2008 | Intel | | | | | | | | | | | | | Quad-Core + GPU Core i7 | 1,160,000,000 | 2011 | Intel | Six-Core Core i7 (Gulftown) | 1,170,000,000 | 2010 | Intel | | | | | | | | | | | | | | | | | Quad-Core + GPU Core i7 | 1,400,000,000 | 2012 | Intel | Dual-Core Itanium 2 | 1,700,000,000 | 2006 | Intel | Six-Core Xeon 7400 | 1,900,000,000 | 2008 | Intel | Quad-Core Itanium Tukwila | 2,000,000,000 | 2010 | Intel | | | | | Six-Core Core i7/8-Core Xeon E5(Sandy Bridge-E/EP) | 2,270,000,000 | 2011 | Intel | 8-Core Xeon Nehalem-EX | 2,300,000,000 | 2010 | Intel |…...

Similar Documents

Integrated Circuit Technology

...Christle Comstock June 20, 2013 Unit 1 Assignment 1: Integrated Circuit Technology The table: The processor model and year when two billion transistors were placed on a single processor chip is: Intel is expected to give attendees at the super-techie conference a rundown on Tukwila specs, and on its upcoming low-power Silverthorne processor. The new 65-nanometer Tukwila Itanium processor, which is expected to be released at the end of this year, will run at up to 2 GHz, have dual-integrated memory controllers and use Intel's QuickPath interconnect instead of a front-side bus. The processor also will have 2 billion transistors on one chip, according to Rob Shiveley, a spokesman for Intel. Itanium, which first hit the market in 2001, targets enterprise servers and high-performance computing machines. "The more transistors on a chip, the more work you get out of that chip," said Dean Freeman, an analyst at Gartner Inc. "With one of these new chips, you should get better performance than you would with two chips out of the previous generation." For some perspective, an earlier Itanium processor, Montecito, was built on 90nm technology and held 1.7 billion transistors. And Penryn, Intel's new 45nm chip for the desktop, which it released last November, has 820 million newly designed transistors. Shiveley noted that Tukwila is expected to have double the performance of Montvale, another Itanium processor that was released late last year, while using only 25% more......

Words: 999 - Pages: 4

Integrated Circuit Technology

...Computer Structure and Logic NT1110 Unit 1 Assignment 1: Integrated Circuit Technology Table 1 Processor Model | Year | Transistor Count | | | | 4004 | 1971 | 2,300 | 8008 | 1972 | 2,500 | 8080 | 1974 | 4,500 | Intel 8085 | 1976 | 6500 | Intel8086 | 1978 | 29,000 | Intel 8088 | 1979 | 29,000 | Intel 286 | 1982 | 134,000 | Intel 386 Processor | 1985 | 275,000 | Intel   486 Processor | 1989 | 1,200,000 | Intel Pentium Processor | 1993 | 3,100,000 | Pentium Pro | 1995 | 5,500,000 | Intel Pentium II Processor | 1997 | 7,500,000 | Pentium III | 1999 | 9,500,000 | Pentium 4 | 2000 | 42,000,000 | Itanium 2 McKinley | 2002 | 220,000,000 | Itanium 2 Madison 6M | 2003 | 410,000,000 | Core 2 Duo | 2006 | 291,000,000 | Atom | 2008 | 47,000,000 | Core i7 (Quad) | 2008 | 731,000,000 | Quad-Core + GPU Core i7 | 2011 | 1,160,000,000 | Intel 9300 Tukwila Processor | 2010 | 2,000,000,000 | | | | | | | | | | | | | | | | Comment on the growth of the number of transistors used in integrated circuits over the years.  The growth of transistors used in integrated circuits has nearly doubled every 18 months give or take a little. This growth falls in line with Moore’s Law.   Gordon Moore a founder of Intel noticed the trends in computer memory and made an observation of the trends.   Moore stated that the amount of transistors on a chip would double every 18 months to 2 years. This has held true for the......

Words: 302 - Pages: 2

Integrated Circuit Technology

...11.2 which is a far cry from 1.3. Due to the rapid rate that technology has grown in the past few years, most computer technicians you speak with – weather they have heard of Moore’s Law or not will tell you that CPU speeds double each years. Though Moore’s Law had said every two years, this rapid increase in technological production has lessened the period in the minds of technicians and users alike. The limitation which exists is that once transistors can be created as small as atomic particles, and then there will be no more room for growth in the CPU market where speeds are concerned. The growth of transistors used in integrated circuits has nearly doubled every 18 months give or take a little. In the semiconductor sector, where the challenge is to double the number of transistors you can fit on a chip every 18 months, transistor widths are approaching the one atom dimension and will soon require the invention of new materials for the sector to advance. Today’s semiconductor chip is about the size of a thumbnail and contains roughly 100 million transistors. The more transistors, the smarter the chip, the overarching goal being to create chips that is smaller, faster and suck less power. As chip designers meet that goal, they continuously shrink transistors and the designs become more intricate. New methods include mechanically assembling chips one molecule at a time and growing integrated circuits from biological seeds. Although still at the basic research......

Words: 810 - Pages: 4

Unit 1 Assignment 1 Integrated Circuits Technology

...Itanium | 2012 | 3,100,000,000 | 62-Core Xeon Phi | 2012 | 5,000,000,000 | The processor chip to hold 2 billion transistors model is Quad-Core Itanium Tukwila and it was launched in 2010. http://www.intel.com/pressroom/kits/events/moores_law_40th/?iid=tech_mooreslaw+body_presskit http://www.wagnercg.com/Portals/0/FunStuff/AHistoryofMicroprocessorTransistorCount.pdf Is the growth reasonable? I say that it is reasonable why, because computing power rose and if the trend continues like it has done and it is still as accurate it will rise even more. Does the growth look surprisingly fast or surprisingly slow? I think it’s going surprisingly fast, every 2 years they are doing double of the previous amount of transistors used in integrated circuits. Can you predict when 100 billion, or even one trillion, transistors may fit on a single chip? If the Moore’s law is still in play and continues to double transistors in a chip every 2 years in approximately 2022 for it to hold around 100 billion and for one trillion in 2028....

Words: 323 - Pages: 2

Integrated Circuit Technology

...Integrated Circuit Technology 1971: The Intel 4004 was a 4-bit central processing unit (CPU) released by Intel Corporation in 1971. It was the second complete CPU on one chip (only preceded by the TMS 1000), and also the first commercially available microprocessor. Such a feat of integration was made possible by the use of then-new silicon gate technology allowing a higher number of transistors and a faster speed than was possible before. 1974: The Intel 8080 was the second 8-bit microprocessor designed and manufactured by Intel and was released in April 1974. It was an extended and enhanced variant of the earlier 8008 design, although without binary compatibility. The initial specified clock frequency limit was 2 MHz, and with common instructions having execution times of 4, 5, 7, 10, or 11 cycles this meant that it operated at an effective speed of a few hundred thousand instructions per second. 1978: The 8086 is a 16-bit microprocessor chip designed by Intel between early 1976 and mid-1978, when it was released. The Intel 8088, released in 1979, was a slightly modified chip with an external 8-bit data bus (allowing the use of cheaper and fewer supporting logic chips[note 1]), and is notable as the processor used in the original IBM PC. The 8086 gave rise to the x86 architecture which eventually turned out as Intel's most successful line of processors. 1993: Pentium microprocessor was introduced on March 22, 1993. Its microarchitecture, dubbed P5, was Intel's......

Words: 469 - Pages: 2

Unit 1 Assignment1: Integrated Circuit Technology

...2000 | Pentium 4 | 42 | 2001 | Itanium | 25 | 2002 | Itanium 2 | 410 | 2003 | Pentium M | 77 | 2005 | Pentium D | 115 | 2006 | Core Duo | 151 | 2006 | Core 2 | 291 | 2006 | Itanium "Montecito" | 1720 | 2008 | Atom | 47 | 2008 | Core i7 | 730 | *2010 | Itanium "Tukwila" | 2000 * | 2010 | Xeon "Nehalem-EX" | 2300 | 2010 | Intel "Westmere" | 1170 | 2011 | Intel "Sandy Bridge" | 995 | 2011 | Xeon E7 | 2600 | 2012 | Itanium "Poulson" | 3100 | 2013 | Intel "Haswell" | 1400 | UNIT 1 ASSIGNMENT1: Integrated Circuit Technology * Indicates the processor model and year when two billion transistors were placed on a single processor chip* Sources: http://en.wikipedia.org/wiki/Microprocessor_chronology http://en.wikipedia.org/wiki/Tukwila_%28processor%29 1. According to Computer Structure and Logic, Chapter 1: Introduction to Computers pg. 15, “The growth in the number of transistors used in integrated circuits is reasonable, because it does hold true to the Moore's Law. Gordon Moore's Law states that "each new chip contained roughly twice as much capacity as its predecessor and each chip was released within 18-24 months of the previous chip." 2. Moore’s Law states that the growth will be exponentially fast. If you look at the chart above, it shows how far they have come and the predictions for the future are large. 3. The prediction is 12 years from 2011 or the year 2023....

Words: 306 - Pages: 2

Unit 1 Assignment 1 - Integrated Circuit Technology

...this processor was Quad-Core Itanium Tukwila * I believe the growth is reasonable. From the advances we’ve made from the 70’s to now such as the cell phone, laptops, hand held devices. It’s no surprise that it increased so much each year. We are able to grow rapidly, and we are in a generation of technology. It wouldn’t be crazy to think that this was possible from seeing other devices progress as well, even now you can hold a computer in the palm of your hand. * The growth from 1971-2014 is outstanding. The first couple years they were released the processors had very few transistors and didn’t increase that much yearly. However, after 1974 with each year the amount of chips almost doubled itself each year. Afterwards with the years to come, the growth rapidly increased. By the year 2010 the transistor count reached 2 billion with the release of the Quad-Core Itanium Tukwila processor. * With this information it’s hard to predict when it could reach 100 billion transistors on a single chip, however seeing the growth from the 70’s to the present we can be sure that it isn’t far fetched to believe it could happen with the upcoming years as technology advances, my prediction would have to be by 2020+ we would be able to accomplish 100 billion on a chip or even more. It all depends how fast we move and the necessity for more transistors on one chip. One thing we know for sure is that growth will remain to be increasing at a fast pace as the years are......

Words: 332 - Pages: 2

Integrated Circuit Technology

...modern computing. A transistor is a semiconductor device used to amplify and switch electronic signals and electric power. It is composed of a semiconductor material with at least three terminals for connection to an external circuit. The transistor has become a fundamental building block of modern electronic devices, and is omnipresent in modern electronic systems. The need for the transistor arose due to its’ predecessor, the vacuum tube’s numerous inefficiencies. Vacuum tubes were notoriously unreliable, due to the heat they generated, and in larger instillations, one failed every couple hours or so. In order to counteract the problem, two Bell Laboratory engineers went to work. In 1947, John Bardeen and Walter Brattain created the transistor. It was smaller, more reliable, and consumed much less power; it made the vacuum tube obsolete. A few short months later, Bell associate William Shockley created the junction transistor, and together the three men were awarded the 1956 Nobel Prize in Physics. Moore's Law observes that over the history of computing technology, roughly every two years the number of transistors in dense integrated circuitry doubles. In 1971 Intel created the 4004, the first microprocessor. A microprocessor is a piece of integrated circuitry that contains all the functions of a computer's CPU. the Intel 4004 housed 2,300 transistors, in a chip that was only 2 inches large. Just a few decades prior it would've taken an entire room worth of equipment to......

Words: 508 - Pages: 3

Unit 1 Assignment 1: Integrated Circuit Technology

...Unit 1 Assignment 1: Integrated Circuit Technology Processor Model | Year | Transistor Count | Intel 4004 | 1971 | 2,300 | Intel 8008 | 1972 | 3,500 | Intel 8080 | 1974 | 4,500 | Intel 8085 | 1976 | 6,500 | Intel 8086 | 1978 | 29,000 | Intel 8088 | 1979 | 29,000 | Intel 80186 | 1982 | 55,000 | Intel 80286 | 1982 | 134,000 | Intel 80386 | 1985 | 275,000 | Intel 80486 | 1989 | 1,180,000 | Pentium | 1993 | 3,100,000 | Pentium II | 1997 | 7,500,000 | Pentium III | 1999 | 9,500,000 | Pentium 4 | 2000 | 42,000,000 | Itanium 2 | 2003 | 220,000,000 | Itanium 2 with 9MB cache | 2004 | 592,000,000 | Core 2 Duo | 2006 | 291,000,000 | Dual-Core Itanium 2 | 2006 | 1,700,000,000 | Atom | 2008 | 47,000,000 | Core i7 (Quad) | 2008 | 731,000,000 | Six-Core Xeon 7400 | 2008 | 1,900,000,000 | Six- Core i7 (Gulftown) | 2010 | 1,170,000,000 | 8-Core Xeon Nehalem-EX | 2010 | 2,300,000,000 | Quad-Core Itanium Tukwila | 2010 | 2,000,000,000 | Six- Core Core i7 (Sandy-Bridge-E) | 2011 | 2,270,000,000 | 10-Core Xeon Westmere-EX | 2011 | 2,600,000,000 | 8-Core Itanium Poulson 2012 3,100,000,000 62-Core Xeon Phi 2012 5,000,000,000 Haswell 2013 1,400,000,000 Moore’s Law- Overall processing power will double every two years. Following Moore’s Law we should see a transistor count of over a hundred billion by the year 2022 and a trillion......

Words: 384 - Pages: 2

Integrated Circuit Technology

...Assignment 1: Integrated Circuit Technology 1. Search the Internet using keywords such as “Intel processor transistor count”. 2. Create a table that presents the processor model, year, and the transistor count for Intel processors from 1971 to present. 3. Identify the processor model and year when two billion transistors were placed on a single processor chip. * In 2008 * The next generation in the Intel Itanium processor family code named Tukwila is described. The 21.5 mm by 32.5 mm die contains 2.05 billion transistors, making it the first two billion transistor microprocessor ever reported. Tukwila combines four ported Itanium cores with a new system interface and high speed serial interconnects to deliver greater than 2X performance relative to the Montecito and Montvale family of processors [1], [2]. 4. Cite the sources where you located the information you placed into the table. * http://download.intel.com/pressroom/kits/intelprocessorhistory.pdf * http://www.ece.ncsu.edu/asic/ece733/2009/docs/Itanium.pdf * [1] S. Naffziger et al., “The implementation of the Itanium 2 microprocessor,” IEEE J. Solid-State Circuits, vol. 37, no. 11, pp. 1448–1460, Nov. 2002. * [2] S. Naffziger et al. , “The implementation of a 2-core, multi-threaded Itanium family microprocessor, ”IEEE J. Solid-State Circuits, vol. 41, no. 1, pp. 197–209, Jan. 2006. 5. Comment on the growth of the number of transistors used in integrated circuits over the......

Words: 314 - Pages: 2

Nt1110 Integrated Circuit Technology

...Jerick San Gabriel NT1110 Unit 1 Assignment 1: Integrated Circuit Technology 2.) Processor Model | Year | Transistor Count | Intel 4004 | 1971 | 2,300 | Intel 8008 | 1972 | 3,500 | Intel 8080 | 1974 | 4,500 | Intel 8085 | 1976 | 6,500 | Intel 8086 | 1978 | 29,000 | Intel 8088 | 1979 | 29,000 | Intel 80186 | 1982 | 55,000 | Intel 80286 | 1982 | 134,000 | Intel 80386 | 1985 | 275,000 | Intel 80486 | 1989 | 1,180,235 | Pentium | 1993 | 3,100,000 | Pentium Pro | 1995 | 5,500,000 | Pentium II | 1997 | 7,500,000 | Pentium III | 1999 | 9,500,000 | Pentium 4 | 2000 | 42,000,000 | Atom | 2008 | 47,000,000 | Itanium 2 McKinley | 2002 | 220,000,000 | Core 2 Duo | 2006 | 291,000,000 | Itanium 2 Madison 6M | 2003 | 410,000,000 | Itanium 2 with 9MB cache | 2004 | 592,000,000 | Core i7 (Quad) | 2008 | 731,000,000 | Quad-Core + GPU Core i7 | 2011 | 1,160,000,000 | Six-Core Core i7 (Gulf town) | 2010 | 1,170,000,000 | Quad-Core + GPU Core i7 | 2012 | 1,400,000,000 | Dual-Core Itanium 2 | 2006 | 1,700,000,000 | Six-Core Xeon 7400 | 2008 | 1,900,000,000 | Quad-Core Itanium Tukwila | 2010 | 2,000,000,000 | Six-Core Core i7/8- Core Xeon E5 | 2011 | 2,270,000,000 | 8-Core Xeon Nehalem-EX | 2010 | 2,300,000,000 | 10-Core Xeon West mere-EX | 2011 | 2,600,000,000 | 8-Core Itanium Poulson | 2012 | 3,100,000,000 | 62-Core Xeon Phi | 2012 | 5,000,000,000 | 3.) Quad-Core Itanium Tukwila, 2010, 2,000,000,000 4.) Anonymous. (2014,...

Words: 357 - Pages: 2

Unit 1 Assignment 1: Integrated Circuit Technology

...NT1110 - Computer Structure & Logic Unit 1 Assignment 1: Integrated Circuit Technology Processor Model | Year | Transistor Count | Intel 4004 | 1971 | 2,300 | Intel 8008 | 1972 | 3,500 | Intel 8080 | 1974 | 4,500 | Intel 8085 | 1976 | 6,500 | Intel 8086 | 1978 | 29,000 | Intel 8088 | 1979 | 29,000 | Intel 80186 | 1982 | 55,000 | Intel 80286 | 1982 | 134,000 | Intel 80386 | 1985 | 275,000 | Intel i960 | 1988 | 250,000 | Intel 80486 | 1989 | 1,180,000 | Pentium | 1993 | 3,100,000 | Pentium Pro | 1995 | 5,500,000 | Pentium II Klamath | 1997 | 7,500,000 | Pentium II Deschutes | 1998 | 7,500,000 | Pentium III Katmai | 1999 | 9,500,000 | Pentium II Mobile Dixon | 1999 | 27,400,000 | Pentium III Coppermine | 2000 | 21,000,000 | Pentium 4 Willamette | 2000 | 42,000,000 | Pentium III Tualatin | 2001 | 45,000,000 | Pentium 4 Northwood | 2002 | 55,000,000 | Itanium 2 McKinley | 2002 | 220,000,000 | Itanium 2 Madison 6M | 2003 | 410,000,000 | Pentium 4 Prescott | 2004 | 112,000,000 | Itanium 2 w/ 9 MB Cache | 2004 | 592,000,000 | Pentium 4 Prescott-2M | 2005 | 169,000,000 | Pentium 4 Cedar Mill | 2006 | 184,000,000 | Core 2 Duo Conroe | 2006 | 291,000,000 | Dual-Core Itanium 2 | 2006 | 1,700,000,000 | Core 2 Duo Allendale | 2007 | 169,000,000 | Core 2 Duo Wolfdale | 2007 | 411,000,000 | Atom | 2008 | 47,000,000 | Core 2 Duo Wolfdale3M | 2008 | 230,000,000 | Core i7 (Quad) | 2008 | 731,000,000 | Six-Core......

Words: 477 - Pages: 2

Integrated Circuit Technology

...Itanium 2012/ 3,100,000,000 62-Core Xeon Phi 2012/5,000,000,000 The processor chip to hold 2 billion transistors model is Quad-Core Itanium Tukwila and it was launched in 2010. http://www.intel.com/pressroom/kits/events/moores_law_40th/?iid=tech_mooreslaw+body_presskit http://www.wagnercg.com/Portals/0/FunStuff/AHistoryofMicroprocessorTransistorCount.pdf Is the growth reasonable? I say that it is reasonable why, because computing power rose and if the trend continues like it has done and it is still as accurate it will rise even more. Does the growth look surprisingly fast or surprisingly slow? I think it’s going surprisingly fast, every 2 years they are doing double of the previous amount of transistors used in integrated circuits. Can you predict when 100 billion, or even one trillion, transistors may fit on a single chip? If the Moore’s law is still in play and continues to double transistors in a chip every 2 years in approximately 2022 for it to hold around 100 billion and for one trillion in 2028...

Words: 318 - Pages: 2

Nt1110 U1As1 Integrated Circuit Technology

...Integrated Circuit Technology (U1AS1) Processor Model | Transistor Count | Year | Intel 4004 | 2,300 | 1971 | Intel 8008 | 3,500 | 1972 | Intel 8080 | 4,500 | 1974 | Intel 8086 | 29,000 | 1978 | Intel 286 | 134,000 | 1982 | Intel 386 | 275,000 | 1985 | Intel 486 | 1,200,000 | 1989 | Intel Pentium | 3,100,000 | 1993 | Intel Pentium Pro | 5,500,000 | 1995 | Intel Pentium II | 7,500,000 | 1997 | Intel Celeron | 7,500,000 | 1998 | Intel Pentium III | 9,500,000 | 1999 | Intel Pentium 4 | 42,000,000 | 2000 | Intel Xeon | 42,000,000 | 2001 | Intel Pentium M | 55,000,000 | 2003 | Intel Core 2 Duo | 291,000,000 | 2006 | Intel Core i7 (quad) | 731,000,000 | 2008 | Intel Quad-Core Itanium | 2,000,000,000 | 2010 | Intel Six-Core i7/8 | 2,270,000,000 | 2011 | Intel 8-Core Itanium | 3,100,000,000 | 2012 | The processor chip that has two billion transistors placed in it was the Intel Quad-Core Itanium, which was released in 2010. Source: 1. http://www.intel.com/content/dam/www/public/us/en/documents/corporate-information/museum-transistors-to-transformations-brochure.pdf 2. http://www.wagnercg.com/portals/0/funstuff/AHistoryofMicroProcessorTransistorCount.pdf The growth of the transistor is reasonable because computer technology grew and it will keep growing, which Moore’s law proves that the......

Words: 283 - Pages: 2

Unit 1 Assignment 1: Integrated Circuit Technology

...Garrett Jones Unit 1 Assignment 1 Date: 3/20/14 Unit 1 Assignment 1: Integrated Circuit Technology Intel Transistor Table Year | Processor | Transistor Count | 1971 | Intel 4004 | 2,300 | 1972 | Intel 8008 | 3,500 | 1974 | Intel 8080 | 4,500 | 1976 | Intel 8085 | 6,500 | 1978 | Intel 8086 | 29,000 | 1979 | Intel 8088 | 29,000 | 1982 | Intel 80186 | 55,000 | 1982 | Intel 80286 | 134,000 | 1985 | Intel 80386 | 275,000 | 1988 | Intel i960 | 250,000 | 1989 | Intel 80486 | 1,180,235 | 1993 | Pentium | 3,100,000 | 1995 | Pentium Pro | 5,500,000 | 1997 | Pentium II Klamath | 7,500,000 | 1998 | Pentium II Deschutes | 7,500,000 | 1999 | Pentium III Katmai | 9,500,000 | 2000 | Pentium III Coppermine | 21,000,000 | 2000 | Pentium 4 Willamette | 42,000,000 | 2001 | Pentium III Tualatin | 45,000,000 | 2002 | Pentium 4 Northwood | 55,000,000 | 2002 | Itanium 2 McKinley | 220,000,000 | 2003 | Itanium 2 Madison 6M | 410,000,000 | 2004 | Pentium 4 Prescott | 112,000,000 | 2004 | Itanium 2 9MB Cache | 592,000,000 | 2005 | Pentium 4 Prescott-2M | 169,000,000 | 2006 | Dual-Core Itanium 2 | 1,700,000,000 | 2006 | Pentium 4 Cedar Mill | 184,000,000 | 2006 | Core 2 Duo Conroe | 291,000,000 | 2007 | Core 2 Duo Allendale | 169,000,000 | 2007 | Core 2 Duo Wolfdale | 411,000,000 | 2008 | Atom | 47,000,000 | 2008 | Core 2 Duo Wolfdale 3M | 230,000,000 | 2008 | Core i7 Quad Core | 731,000,000 | 2008 | Xeon 7400 Six......

Words: 466 - Pages: 2